Efficient Global Spatial-Angular Sparse Coding for Diffusion MRI with Separable Dictionaries
نویسندگان
چکیده
Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo, by measuring water diffusion along angular gradient directions in q-space. High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor imaging, but the high number of samples needed to estimate diffusivity requires lengthy patient scan times. To accelerate dMRI, compressed sensing (CS) has been utilized by exploiting a sparse dictionary representation of the data, discovered through sparse coding. The sparser the representation, the fewer samples are needed to reconstruct a high resolution signal with limited information loss, and so an important area of research has focused on finding the sparsest possible representation of dMRI. Current reconstruction methods however, rely on an angular representation per voxel with added spatial regularization, and so, the global level of sparsity can be no less than the number of voxels. Therefore, state-of-the-art dMRI CS frameworks may have a fundamental limit to the rate acceleration that can be achieved. In contrast, we propose a joint spatial-angular representation of dMRI that will allow us to achieve levels of global sparsity that are below the number of voxels. A major challenge, however, is the computational complexity of solving a global sparse coding problem over large-scale dMRI. In this work, we present novel adaptations of popular sparse coding algorithms that become better suited for solving large-scale problems by exploiting spatial-angular separability. Our experiments show that our method achieves significantly sparser representations of HARDI than the state-of-the-art which has the potential to increase HARDI acceleration to new levels.
منابع مشابه
Spatial-Angular Sparse Coding for HARDI
High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation and richer sets of features for disease classification than diffusion tensor imaging. However, existing HARDI reconstruction algorithms require a large number of gradient directions, making the acquisition time too long to be clinically viable. State-of-the-art compressed sensing methods can redu...
متن کاملNon Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased esti...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملAn Efficient Liver Segmentation Using Kernel Sparse Coding Automated (ksca) Approach
Computed Tomography (CT) images have been widely used for diagnosis of liver disease and volume measurement for liver surgery or transplantation. The approach is presented with respect to liver segmentation, but it can be easily extended to any other soft tissue by setting appropriately the values of the parameters for the splitting and merging algorithm and for the region growing refinement st...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.05846 شماره
صفحات -
تاریخ انتشار 2016